Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-Acetonylidene-1-ethyl-2,3,4,5-tetra-hydro-1H-1,5-benzodiazepin-2-one

Mohammed Sydia Mohamed Said Ould, ${ }^{\text {a }}$ Bahia Djerrari, ${ }^{\text {a }}$ M^{\prime} Barek El Abbassi, ${ }^{\text {a }}$ Jilali Fifani, ${ }^{\text {a }}$ El-Mokhtar Essassi, ${ }^{\text {a }}$ Brahim El-Bali ${ }^{\text {b }}$ and Michael Bolte ${ }^{\text {c* }}$
${ }^{\text {a }}$ Laboratoire de Chimie Organique Héterocyclique, Départment de Chimie, Faculté des Sciences, Av. Ibn Batouta, Rabat, Morocco, ${ }^{\text {b }}$ Départment de Chimie, Faculté des Sciences Dhar Mehraz, Fés, Morocco, and ${ }^{\text {TInstitut für Organische Chemie, J.-W.- }}$ Goethe-Universität Frankfurt, Marie-Curie-Stra β e 11, 60439 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 29 February 2000
Accepted 10 March 2000

Data validation number: IUC0000068
The title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains a diazepine ring, which appears in a boat conformation. An intramolecular hydrogen bond is formed between the NH group of the diazepine ring and a carbonyl O atom of one of the side chains.

Comment

As part of our research on the use of 4-hydroxy-6-methyl-pyran-2-one in heterocyclic synthesis (El Abassi et al., 1987, 1997; Essassi et al., 1987), we have reinspected the condensation of o-phenylenediamine with γ-pyrone with the aim of confirming the structure of the obtained product. In a previous work (El Abassi et al., 1987), we have shown that the reaction of o-phenylenediamine with γ-pyrone leads to 4 -acetonyl-idene-1,5-benzodiazepin-2-one. In order to confirm the structure of the reaction product, we have converted 4-acetonylidene-1,5-benzodiazepin-2-one with ethyl bromide to afford the title compound, (I), and carried out an X-ray structure analysis.

(I)

The geometry of the title compound shows no unusual features. The diazepine ring shows a boat conformation. The seven-membered ring can be described as being composed of three planes: a bow plane ($\mathrm{C} 2, \mathrm{C} 3$ and C 4), a central plane
($\mathrm{N} 1, \mathrm{C} 2, \mathrm{C} 4$ and N 5 ; r.m.s. deviation $0.019 \AA$) and a stern plane (N1 C11, C6 and N5; r.m.s. deviation $0.013 \AA$). The dihedral angle between central and bow planes is $58.70(8)^{\circ}$, and there is an angle of $36.31(5)^{\circ}$ between central and stern planes.

The title compound shows an intramolecular hydrogen bond between the NH group of the diazepine ring and a carbonyl O atom of one of the side chains. Furthermore, the other carbonyl O atom shows three short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Experimental

To a solution of 4-acetonylidene-1,5-benzodiazepin-2-one (1 mmol), in benzene (60 ml), tetra- n-butylammonium bromide (20 mmol) in $\mathrm{NaOH}(30 \mathrm{ml})$ was added as an alkylating agent. After dilution and decantation, the organic phase was washed with a hydrochloric acid solution (10%) and dried. The benzene was evaporated under reduced pressure and the residue was chromatographied on a silicate column with hexane as eluant. Analysis measured (calculated): C 68.83 (68.85), H 6.52 (6.56), N 11.43% (11.47\%).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=244.29$
Monoclinic, $P 2_{1} / n$
$a=8.730$ (1) \AA 。
$b=10.052(1) \AA$
$c=14.998$ (2) \AA
$\beta=99.36(1)^{\circ}$
$V=1298.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=1-25^{\circ}$
$\mu=0.085 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.60 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Siemens CCD three-circle diffract- $\quad R_{\text {int }}=0.034$

ometer

ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min }=0.951, T_{\max }=0.975$
28486 measured reflections
3350 independent reflections
2865 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0635 P)^{2}\right. \\
& \quad+0.2665 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.113$
$S=1.068$
3350 reflections
164 parameters
H -atom parameters constrained

Table 1

Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 41^{\mathrm{i}}$	0.95	2.52	$3.3367(13)$	144
C21-H21 ${ }^{\mathrm{ii}}$	0.95	2.58	$3.4457(14)$	152
C3-H3A $\cdots 1^{\text {ii }}$	0.99	2.66	$3.5948(14)$	157
N1-H1 \cdots O22	0.88	1.98	$2.6640(12)$	133

Symmetry codes: (i) $1+x, y, z$; (ii) $-x, 1-y, 1-z$.

All H atoms were initially located by difference Fourier synthesis. Subsequently their positions were idealized and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ (aromatic) $=0.95, \mathrm{C}-$ $\mathrm{H}($ secondary $)=0.99, \mathrm{C}-\mathrm{H}($ methyl $)=0.98$ or $\mathrm{N}-\mathrm{H}=0.88 \AA$, and fixed individual displacement parameters $\left[U(\mathrm{H})=1.5 U_{\text {eq }}\right.$ (methyl C),

electronic papers

$U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$. The C23 methyl group was allowed to rotate about its local threefold axis.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

References

El Abbassi, M., Essassi, E. M. \& Fifani, J. (1987). Tetrahedron Lett. 28, 13891390.

El Abbassi, M., Essassi, E. M. \& Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205-210.
Essassi, E. M., El Abbassi, M. \& Fifani, J. (1987). Bull. Soc. Chim. Belg. 96, 225-228.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

